Selective Crypting with Haar-Wavelets

نویسنده

  • Alexa Nawotki
چکیده

The coefficients of a wavelet–decomposition form into different levels according to the size of the described details. This can be utilized to crypt only a part of the given data while keeping the rest unchanged so that critical information is filtered out. I achieved this idea with Haar–wavelets for a special type of data and show in addition an a priori error estimation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

APPLICATION OF HAAR WAVELETS IN SOLVING NONLINEAR FRACTIONAL FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS

A novel and eective method based on Haar wavelets and Block Pulse Functions(BPFs) is proposed to solve nonlinear Fredholm integro-dierential equations of fractional order.The operational matrix of Haar wavelets via BPFs is derived and together with Haar waveletoperational matrix of fractional integration are used to transform the mentioned equation to asystem of algebraic equations. Our new met...

متن کامل

The using of Haar wavelets for the expansion of fractional stochastic integrals

Abstract: In this paper, an efficient method based on Haar wavelets is proposed for solving fractional stochastic integrals with Hurst parameter. Properties of Haar wavelets are described. Also, the error analysis of the proposed method is investigated. Some numerical examples are provided to illustrate the computational efficiency and accuracy of the method.  

متن کامل

Some results on Haar wavelets matrix through linear algebra

Can we characterize the wavelets through linear transformation? the answer for this question is certainly YES. In this paper we have characterized the Haar wavelet matrix by their linear transformation and proved some theorems on properties of Haar wavelet matrix such as Trace, eigenvalue and eigenvector and diagonalization of a matrix.

متن کامل

A Haar wavelets approach to Stirling's formula

This paper presents a proof of Stirling's formula using Haar wavelets and some properties of Hilbert space, such as Parseval's identity. The present paper shows a connection between Haar wavelets and certain sequences.

متن کامل

Ranklets: Orientation Selective Non-Parametric Features Applied to Face Detection

We introduce a family of multiscale, orientation-selective, non-parametric features (“ranklets”) modelled on Haar wavelets. We clarify their relation to the Wilcoxon ranksum test and the rank transform and provide an efficient scheme for computation based on the Mann-Whitney statistics. Finally, we show that ranklets outperform other rank features, Haar wavelets, SNoW and linear SVMs (based on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998